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A numerical algorithm to calculate the periodic response, stability and bifurcations of
a periodically excited non-conservative, Multi-Degree of Freedom (MDOF) system with
strong local non-linearities is presented. First, the given large order system is reduced using
a fixed-interface component mode synthesis procedure (CMS) in which the degrees of
freedom associated with non-linear elements are retained in the physical co-ordinates while
all others, whose number far exceeds the number of non-linear DOF, are transformed to
modal co-ordinates and reduced using real mode CMS. A shooting and continuation
method is then applied to the reduced system to solve for the periodic response. Floquet
stability theory is used to calculate stability and bifurcations of the periodic response. The
algorithm is applied to study the response to imbalance, stability, and bifurcations of a 24
DOF flexible rotor supported on journal bearings. The results indicate that the proposed
algorithm, though approximate, can yield very accurate information about dynamic
behavior of large order non-linear systems, even with few numbers of retained component
modes. The algorithm, which imposes less demand on computer time and memory, is
believed to be of considerable potential in analyzing a variety of practical problems.
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1. BACKGROUND

The dynamic analysis of multiple shaft rotor-bearing systems can require the assembly and
solution of large order sets of ordinary differential equations of motion. Additionally,
when one or more non-linear elements such as fluid-film bearing, squeeze-film damper, ball
bearing-clearance, fluid seal, etc., are present in the system, which is often the case, the
analysis becomes highly complicated. Very often the non-linear equations of motion are
linearized in the neighborhood of an operating point and the order of the resulting linear
system of equations is reduced using modal transformations and then the reduced model
is solved for system response. Though this analysis yields satisfactory results when the
rotor system is operating in a weakly non-linear regime (when a fluid-film bearing is
operating with low eccentricity (lightly loaded), it is not useful when the rotor-bearing
system displays strongly non-linear behavior. For example, fluid-film bearings produce
forces which are highly non-linear functions of displacements when operating at high
eccentricities (heavily loaded). In such a case, the linearization procedure masks potentially
dangerous bifurcations such as subcritical Hopf bifurcations that are predicted by the
original non-linear equations of motion. Such a bifurcation which often leads to serious
rotordynamics stability problems can only be predicted by retaining higher-order terms.
Only a few analysts have dealt with non-linear rotordynamics for large scale systems and
even a smaller number of them have dealt with steady state response and stability of such
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systems under forced excitations. Very often stability information is predicted using
eigenanalysis of the unforced system even when the system is under forced excitation due
to imbalance or any other source of excitation. Such a procedure may be valid only for
weakly non-linear systems and more general procedures based on modern dynamical
systems theory are required to handle strongly non-linear systems. It is the objective of
this work to develop numerical procedures to calculate the steady state periodic response,
its stability, and bifurcation for a large order nonlinear system under forced excitation.

The large order system of equations which are generated by linear and/or non-linear
simulations are usually time consuming to set up and costly to solve in terms of computer
time and storage. This is particularly important in design studies which require a
completely new system assembly and solution for each new set of system parameters. For
most linear transient analyses and for all non-linear analyses, numerical integration is
required causing the cost and accuracy of analysis to be strongly dependent on the order
of the system equations. Hence, any algorithm for treating large order systems should
incorporate some type of reduction scheme to reduce the order of the system.

Few researchers have addressed the dynamic analysis of large order nonlinear system
with particular emphasis on the steady state analysis. The method of harmonic balance
has been successfully used by Yamauchi [1], Choi and Noah [2], Kim and Noah [3, 4] and
Shiau and Jean [5]. Choi and Noah [2] utilized discrete Fourier transform procedures in
conjunction with harmonic balance and also included subharmonic response components.
Kim and Noah [3, 4] added a dynamic condensation technique to the Harmonic Balance
Method to render the problem tractable for large order systems. This condensation
procedure reduces the iteration problem so that it involves those co-ordinates which are
directly associated with the nonlinear components. The work of Shiau and Jean [5] is
similar to that of Choi and Noah [6] and also includes a condensation technique that
reduces the problem to co-ordinates that involves only the nonlinear co-ordinates. Their
condensation strategy is a generalization of the same strategy developed by McLean and
Hahn [7] for analyzing the centered circular orbit response of large rotor systems with
squeeze-film dampers.

The collocation method along with a component mode synthesis (CMS) procedure was
used by Nataraj and Nelson [8] to calculate the periodic solutions of large order nonlinear
systems. The CMS procedure was used to reduce the order of the system and render the
problem numerically tractable. Jean and Nelson [9] presented a collocation method that
could be utilized for large order nonlinear systems directly in physical co-ordinates and
used a reduction procedure similar to Shiau and Jean [5] and McLean and Hahn [10].

Fey et al. [11] used a combination of finite-difference and CMS methods to calculate
the steady state response of structural systems. The CMS procedure was used to reduce
the order of the system, and the finite-difference method with arc-length continuation
scheme is applied to calculate the periodic solution and its stability.

Even with reduction procedures, the harmonic balance and collocation methods cited
above generate a system of nonlinear algebraic equations whose order is often quite high
when more harmonics are included in the assumed response. For example, for every
additional harmonic included, the number of unknowns increases by two times the order
of the system. Finite difference methods also can result in a large system of nonlinear
algebraic equations depending on the number of time steps used. The solution of such large
system of equations is time consuming and is prone to convergence problems. The shooting
method with an arc-length continuation scheme was successfully used by Sundararajan and
Noah [12–14] and Noah and Sundararajan [15] for a low order rotor-bearing system
consisting of squeeze-film dampers and journal bearings. The advantage of the shooting
method over other methods such as harmonic balance, collocation and finite difference
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methods is that the number of resulting nonlinear algebraic equations is never more than
the order of the system. The number of resulting nonlinear algebraic equations in the
shooting method is not dependent on the number of harmonics present in the response
and will be equal to the order of the system. This means if a procedure such as CMS is
used to reduce the order of the original system, the number of nonlinear equations from
a shooting method will equal the order of the reduced system and never more. Also, from
the authors’ experience, the nonlinear algebraic equations from the shooting method have
better convergence since they are solved by enforcing a two-point boundary value
satisfying the periodicity. In periodically forced systems, the shooting procedure can be
started with an assumed period equal to the period of excitation. Since shooting methods
require calculation of a Jacobian at every time increment, the Jacobian matrix upon
convergence can be used to form the Floquet matrix which in turn will yield local stability
and bifurcation information. Because of these advantages, the shooting method is
proposed to be used for this study to calculate the periodic solution. A pseudo-arc length
continuation scheme is embedded into the shooting scheme to calculate unstable periodic
solution branches involving saddle-node bifurcations [16].

For large order systems, Crandall and Yeh [17] proposed a method of automatically
generating modes based on Raleigh–Ritz procedure and then reducing the order of the
system. This procedure did not uncouple the equations of motions. Glasgow and Nelson
[18] were one of the first to recognize the advantages of CMS procedures for reduction
of large order rotordynamic systems and used it to calculate the eigenvalues and stability
of a rotor system. Nelson et al. [19] further extended the CMS procedure to calculate the
transient response of a nonlinear rotor system. The main advantages of the CMS
procedure (Childs [20]) in addition to substantial reduction in the total number of degrees
of freedom are (1) the CMS procedure lends itself to a transient analysis which is very
important for the operation and analysis of many machinery, (2) it can be directly applied
to multiple shafts with multiple interconnections, (3) it can be adapted easily to general
finite-element models for machinery rotor/housing. Because of its generality and
versatility, a CMS procedure is proposed to be used in this work to reduce the order of
the system. A brief review of component mode synthesis procedures is given below.

Summaries of the various developments in component mode synthesis were presented
by Hou [21], Craig and Chung [22], Nelson et al. [19] and Craig [23]. The initial
development of the method of component mode synthesis is due to Hurty [24] with
subsequent simplification of the formulation by Craig and Bampton [25]. Glasgow and
Nelson [18] developed a CMS approach for rotordynamic systems which utilizes
component constraint modes as well as constrained precessional modes, thereby allowing
a full modal transformation for general second order systems analogous to the approach
by Craig and Bampton [25] for lightly damped symmetric systems. The fixed-interface
component mode method used in their work requires that all of the original interface
displacement co-ordinates be retained in the final coupled structure model but produces
a very accurate eigen solutions for a given number of degrees of freedom [23].
Free-interface component mode synthesis methods are attractive when a structure is
assembled using component modes obtained from modal testing. Though these methods
have been successfully used by a few authors [26, 27], residual flexibility and inertia-relief
modes are to be included to achieve comparable accuracy and convergence as that of the
fixed-interface component methods [28, 29] and this will necessitate considerable additional
computer programming and book keeping for large order systems. Since fixed-interface
CMS procedures have been known to be accurate, it is used in the current work.

The procedure developed by Glasgow and Nelson [18] utilizes fixed component modes
for the rotating assembly that includes gyroscopic effects. A primary disadvantage of this
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method is that the modes are speed dependent, due to the gyroscopics, and require
modification at each spin speed. Also, the equations of motion involve physical
co-ordinates which are real values and modal co-ordinates which are complex, and this
requires a numerical integration of a system of complex variables. The use of complex
modes is justified by stating that the modes are true component modes of the rotating
system so that only a few modes need to be retained at any speed in order to obtain a
highly accurate model. One of the objectives of this work is to compare the effectiveness
of real (planar) modes with that of complex modes in predicting the modal characteristics
of a rotor bearing system.

A study using combination of the shooting/continuation method with a CMS procedure
has not been reported previously. Because of the cited advantages of both methods, a
combination of these methods for engineering application is attractive and is hence the
subject of this study. A detailed mathematical formulation of shooting and continuation
methods for non-autonomous systems are given by Keller [16], Seydel [30], and Parker and
Chua [31]. A detailed exposition of CMS procedures for rotor-bearing systems can be
found in Glasgow and Nelson [18], Nelson et al. [19] and Childs [20]. Hence, the details
of these methods will not be repeated here. Only relevant details with regard to the current
application will be given here. In the following section a general mathematical development
of the combined procedure involving CMS, shooting, and continuation methods is
presented.

2. MATHEMATICAL DEVELOPMENT

The proposed combined algorithm first uses a fixed-interface CMS procedure to
substantially reduce the order of the system and then applies shooting and continuation
schemes to calculate the periodic solution, its stability, and bifurcations. First a
finite-element model is developed for the rotor system and the degrees of freedom
associated with nonlinear supports are identified. These degrees of freedom will be called
boundary co-ordinates and will be retained in the analysis in the original physical
co-ordinates themselves. The remaining degrees of freedom not associated with the
nonlinear elements will be called internal co-ordinates. These degrees of freedom will be
converted to modal co-ordinates and co-ordinates corresponding to higher modes will be
subsequently discarded thereby effectively reducing the total number of degrees of
freedom. Since in a rotor system, the forcing function is predominantly at the running
speed (due to imbalance), it is often enough to retain only modes with frequencies up to
and including the running speed. Stability and bifurcations of the periodic response for
the reduced system is then calculated using the shooting and continuation scheme. The
shooting and continuation schemes generate a matrix called Monodromy matrix (also
called Jacobean) and the eigenvalues of this matrix help in determining the stability of the
periodic response. If all the eigenvalues are within the unit circle, then the periodic solution
is stable and if any one of them is outside the circle, then the solution is unstable due to
a bifurcation. The way through which an eigenvalue or a pair of eigenvalues cross the unit
circle determines the nature of instability. A reader might refer to a number of excellent
texts available on this subject such as Balachandran and Nayfeh [32].

The following steps describe the mathematical details of system order reduction using
the CMS procedure.

(1) Symmetric mass, damping, and stiffness matrices for the system are assembled using
a finite-element formulation or any other method. For reasons to be explained later, the
non-symmetric stiffness and damping coefficients from elements such as bearings, and seals
and gyroscopic forces are not included in the assembly procedure at this time.
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(2) The boundary co-ordinates (xb ) are identified. The boundary co-ordinates are the
degrees of freedom associated with nonlinear elements. The remaining degrees of freedom
are called internal co-ordinates (xi ).

(3) The mass, stiffness, damping matrices and the force vectors are rearranged using
simple transformations to determine submatrices of each of the above matrices/vectors
associated with boundary and interior co-ordinates, respectively:

$Mbb Mbi

Mib Mii%6ẍb

ẍi7+$Cbb Cbi

Cib Cii%6ẋb

ẋi7+$Kbb Kbi

Kib Kii%6xb

xi7=6Fb

Fi7+6Fnsb

Fnsi7. (1)

The subscript s indicates that matrices are symmetric. Fb denotes forces acting at the
boundary co-ordinates which can be nonlinear functions of boundary co-ordinates. Fi

denotes forces acting at the interior co-ordinates and can be unbalance forces or any other
excitation. Fnsb and Fnsi are the forces from elements such as a bearing or a seal with
non-symmetric stiffness and damping properties or from gyroscopics. The gyroscopic
matrix is defined as

$ 0
−v[G]

v[G]
0 %6u̇x

u̇y7
where [G] defines the gyroscopic coupling properties, u̇x , u̇y are velocities of degrees of
freedom associated with disk nodes.

(4) The main idea of the fixed-interface component mode synthesis (CMS) procedure
is to express the displacement of any point in a component as the superposition of two
types of displacement modes, that are (i) constrained normal modes—displacement relative
to the fixed component boundaries, and (ii) static modes—displacement produced by
displacing only the boundary co-ordinates. The constrained normal modes are obtained
by setting the boundary co-ordinate state vector in equation (1) to zero and then obtaining
the free-vibration problem for the interior co-ordinates:

Miiẍi +Ciiẋi +Kiixi =0. (2)

The eigenvalues and eigenvectors of this system are complex in general. The complex
eigenvectors, as seen from the works of Glasgow and Nelson [18] and Nelson et al. [19]
when used for modal truncation, results in modal co-ordinates that are complex and
require extra computer memory and time in addition to requiring numerical integration
of complex variables (transient analysis). An alternative is not to include matrix Cii , at the
expense of a small loss of accuracy, while calculating the eigenvectors of the above system
in which case the resulting eigenvectors are real. This is because matrix Mii is
positive-definite and Kii is symmetric in general. The main advantage of using real modes,
despite being approximate, is that they are not a function of speed and hence need to be
calculated only once. On the contrary, if the non-symmetric stiffness and damping
properties of a seal or a bearing in the original system were included in the calculation
of the eigenvectors required for the CMS procedure, then the eigenvectors would have to
be calculated at every speed since mass, stiffness and damping properties of fluid-film
bearings, seals etc. are functions of speed. The assembly procedure has to be repeated at
every speed. Also, the procedure yields complex eigenvalues and eigenvectors. Because of
the simplicity of real modes, it is proposed to examine their usefulness in calculating
unbalance response, stability, and bifurcations of a large order nonlinear system under
periodic excitation.
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Let the real eigenvectors of the system,

Miiẍi +Kiixi =0, (3)

form an eigenvector matrix denoted by A.
(5) The static vectors which are displacements produced by displacing the boundary

co-ordinates are given by the matrix B,

xi =Bxb, B=−K−1
ii Kib. (4)

(6) Now the desired co-ordinate transformation mentioned in step 4 is achieved from,
xi =Bxb +Aq, where q is the modal co-ordinate vector.

(7) The proposed transformation does not change the boundary co-ordinates; hence, the
complete transformation is

6xb

xi7=$Ibb

Bib

0bi

Aii%6xb

qi7, 6xb

xi7=D6xb

qi7, (5)

where Ibb is a unit matrix. D takes its meaning from equation (5). Substituting in equation
(1) and multiplying the resulting equation by DT yields

$M11 M12

M21 M22%6ẍb

q̈7+$C11 C12

C21 C22%6ẋb

q̇7+$K11 K12

K21 K22%6xb

q7=6F1
F27. (6)

By choosing only the modes that are of interest in matrix A, one can drastically reduce
the size of D and hence that of the system. Typically, only modes whose natural frequencies
are within or moderately above the running speed of the rotor are retained. While the
above equations are coupled, they are much smaller in number compared to the original
system in equation (1). The reduced model can be used for stability, synchronous-response,
or transient analysis.

(8) The reduced system is to be solved using the shooting and continuation schemes.
First, the system has to be written in first order form for ease of numerical integration.
This yields

$ 0
M

M
C%h� +$−M

0
0
K%h=60F7,

ẋb

h=
q̇

xb
(7)

q

A1h� +B1h=F1,

where matrices A1, B1, and F1 take their meaning from equation (7).
(9) It is convenient in this first order development to introduce the transformation

h= ay, y=(ẋb, xb, q̇, q)T. (8)

The above transformation groups the boundary degrees of freedom together and hence
also the right-hand side for the nonlinear forces at the boundary co-ordinates which makes
the Jacobian formulation easier.
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The above substitution yields a system of first order equations,

Eẏ+Fy=Q, (9)

where E, F, Q are corresponding transformed matrices.
The system is now in a form amenable to the shooting and continuation schemes briefly

described below. The shooting and continuation methods are used to solve for the steady
state periodic response, its stability, and bifurcations when a parameter (speed) is varied.

3. SHOOTING METHOD FOR PERIODIC SOLUTION OF PERIODICALLY
FORCED SYSTEMS

A shooting method to locate a periodic solution of a nonlinear system subjected to
external excitation (non-autonomous system) is presented in this section. The following
exposition is a modification of the procedure of Aluko and Chang [33] for autonomous
systems and closely follows that in the paper by Sundararajan and Noah [34]. Periodic
solutions are sought for a system described by a given system of differential equations
stated in the first order form:

ẋ(t)= f(t, x(t), l),

x, f$Rn; x=(x1, x2, . . . , xn ),

l, t$R, te 0, (10)

where the ‘over dot’ signifies differentiation with respect to time t. The function f is an
explicit function of time indicating that the system considered is non-autonomous. The
dependence of the periodic solutions of equation (10) on the bifurcation parameter l will
be investigated.

Any periodic solution of equation (10) must satisfy

x(0)= x(T), (11)

where T is the minimum period of the response. It is often convenient to normalize the
period to unity so that the integration time interval is [0, 1]. With this, the differential
equation (10) and its imposed condition, equation (11), are transformed to

ẋ(t)=Tf(t, x(t), l)0 g(t, x: l), x(0)= x(1), (12)

where g=[g1, g2, . . . , gn ]T, t= t/T.
The original problem has now been replaced by a boundary value problem with

non-separated boundary conditions, which will prove to be useful in the continuation
procedure to be explained later.

3.1. – 

Keller’s outline [16] for the solution of a generalized two-point boundary problem,
adopted to the present case for locating periodic solutions [33], is used here. The boundary
value problem can be restated as

ẋ(t)= g(t, x: l), Ex(0)+Fx(1)=0, (13a, b)

where E is a n× n unit matrix and F=−E. Consider an initial value problem related to
equation (13a),

u̇= g(t, u: l), u(0)= s, u, s$Rn. (14)
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Denoting the solution of equation (14) by u(s, l, t), we seek s such that

f(s, l)=0, (15)

where the boundary conditions residual function f is defined as

f(s, l)=Eu(s, l, 0)+Fu(s, l, 1). (16)

Obviously, solution s will be an n-dimensional vector on the periodic solution with the
assumed period T. In case such a solution cannot be found, the algorithm has to be
repeated for increasing integer multiples of T until a solution is found. With a given period
T and parameter l, there are n unknowns (components of vector s) in as many equations.

The basic Newton–Fox shooting algorithm may be outlined as follows:

s0—initial guess of the solution, sn+1 = sn +Dsn,

where the corrections Dsn solve the linear system of equations viz.,

Q(sn, l0)(Dsn)=−f(sn, l0). (17)

The n-order square matrix Q in equation (17) is the Jacobian of f(s, l) with respect to
s. This can be written as

Q(s, l0)=$1f

1s%=[E+FW(s, l, 1)], (18)

where the n× n matrix W(s, l, t) is obtained by solving the following variational set of
equations associated with equation (14):

W� =A(t; s, l)W, W(s, l, 0)= I. (19)

The n× n matrix A is defined as

A(t; s, l)=
1g
1u

(t; u(s, l, t), l). (20)

The n-order matrix A is thus the Jacobian of function g with respect to u evaluated along
the periodic solution.

The above iterative procedure for computation of a point on the periodic solution at
l= l0 can be summarized as follows.

For a given sn, we simultaneously integrate the given equations of motion (14), and the
variational set (19) to get W(s, l, 1) and f(sn, l0) and solve the linear system (17) for sn

at each iteration. When Dsn is sufficiently low, convergence to the periodic solution is
achieved and the iterations are terminated. In the present work the following relative error
condition [16] was used to check convergence (symbol �x, y� denotes inner-product of x
and y),

�Dsn, Dsn�
�sn, sn� E 1·0E−9. (21)

4. CONTINUATION OF A PERIODIC SOLUTIONS—PSEUDO-ARC LENGTH
ALGORITHM

The problem of continuation of solutions in general is that of computing whole solution
branches, i.e., obtaining a solution at l= lj+1 given that the accurate solution at l= lj

is known. Several continuation schemes have been outlined by Seydel [30]. Among them
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the pseudo-arc length continuation scheme has been widely used by several authors [35, 36]
due to its accuracy and simplicity. To this end, Keller’s algorithm [16] for algebraic
continuation has been adopted in the present work for determining the periodic solutions.
In order to use this algorithm, the problem of continuation of the periodic solution is
converted to the problem of continuation of the fixed points of the Poincare map of the
system. In other words, the continuation may be considered to be one of the solutions of
the previously formulated system of algebraic equations (15).

The basic idea in pseudo-arc length continuation is to drop the natural parameterization
by l and use some other parameterization. Consider the equation

f(s, l)=0,

where f is the boundary condition residual function defined in equation (15). If (s0, l0) is
any point on a regular path and (s0, 0) is the unit tangent to the path, the scalar
normalization is adjoined to equation (15) so that

N(s, l, DL)= ṡ0T(s− s0)+ l� 0(l− l0)−DL=0. (22)

This is the equation of plane, which is perpendicular to the tangent (s0, 0) at a distance DL
from (s0, l0). This plane will intersect the curve G(L), if DL and the curvature of G are not
too large. That is, equations (15) and (22) are solved simultaneously for (s(L), l(L)). Using
Newton’s method, this leads to a linear system:

$fn
s

ṡ0T

fn
l

l� 0%$Dsn

Dln%=−$fn

Nn%. (23)

Here, fn
s =fn

s (sn, ln), fn
l =fn

l (sn, ln), and the iterates are sn+1 = sn +Dsn and
ln+1 = ln +Dln. The coefficient matrix in the above relation is always non-singular.
However, whenever fs is singular or almost singular a bordering algorithm [16] can be
used.

It may be noticed that the continuation routine requires the evaluation of fl at each
iteration. The formulation is

1f

1l
=FZ(1), (24)

where F is the same boundary condition matrix defined in equation (13b) and Z(t)= 1u/1l

is the n-vector solution of the variational system,

Z� =AZ−R, Z(0)= 0. (25)

The n× n matrix A already was defined in equation (20) while the n-vector R is

R=
1g
1l

. (26)

Thus, when expressions for R are available, they can be inserted into equation (19) and
integrated with zero initial conditions. The product of the constant matrix F and the matrix
Z(t) when computed at the end of the period then gives fl in equation (23).

Determination of the unit tangent (s) is done only up to its sign. The choice of the sign
is crucial in order to avoid going backwards or getting trapped between two points. If the
tangent at the previous solution is (s0), one chooses the sign for (s) so as to make the inner
product �(s0, 0), (s)� positive. This unit tangent vectors (s0, 0) must satisfy

f0
s ṡ0 +f0

ll� 0 =0 (27a)



.   . . 704

and

=u̇0=2 + =l� 0=2 =1. (27b)

Let us consider regular points where f0
s is non-singular. The f0 is found from

f0
s g0 =−f0

l . (28)

Then set,

ṡ0 = ag0, l� 0 = a, (29)

where a is determined from equation (30) as

a=2
1

z1+ =g0=2
. (30)

The sign of a is chosen so that the orientation of the path is preserved, if (s−1, l−1) is the
preceding tangent vector, then we require

a[ṡT
−1g0 + l� −1]q 0. (31)

In the sections that follow, first numerical examples to compare the accuracy of eigenvalues
predicted by the CMS procedure using complex modes with those produced by the CMS
procedure using real modes are presented for MDOF rotor-bearing systems. The objective
here is to see if real modes can produce reasonably accurate results compared to those
obtained using complex modes. If the real modes are accurate enough, then they can be
used for obtaining steady state response and stability of the system as well. Use of real
modes over complex modes could save computer time and memory, and programming
complexity. Numerical examples using real modes for obtaining the steady state response
and stability are presented in a subsequent section.

5. NUMERICAL EXAMPLES—EIGENVALUE ANALYSIS

Two example rotor-bearing systems are used to compare the accuracy of eigenvalues
predicted by the CMS procedure using real modes with those calculated using complex
modes. The first example is a single uniform shaft used by Glasgow and Nelson [18]. The
shaft is a 10·27 cm(40) diameter steel member, 127 cm (500) long, supported on identical
bearings. This example was chosen so that the results using the proposed algorithm can
be bench marked with those published in the above references. The shaft is modelled as
an assemblage of five equal length finite elements. Whirl modes and stability results are
presented for this simple model. The rotor model has 24 displacement degrees of freedom,
4 of which are designated as boundary co-ordinates. Thus, there are 20 constrained
precessional modes available for truncation. For example, with 16 constrained precessional
modes truncated, the original 24 degrees of freedom system is then approximated by an
8 degree of freedom model. In Case 1, a simple shaft supported on isotropic bearings is
analyzed. In Case 2 the same beam is used but in an overhung configuration with
additional masses and rotational inertias (disks), and stiffness, damping, and mass
coefficients from a liquid annular seal. Case 2 thus as pronounced gyroscopic and external
damping forces in the model. Numerical values of the physical and support parameters
are given below for both cases. Truncated whirl frequency analyses were performed for
these cases.
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Case 1 (refer to Figure 1): undamped isotropic bearings with stiffness
K=1·753×107 N/m (1·0 105 lb/in.) are located at the two ends of a uniform shaft [18].
The shaft is a 10·27 cm (40) diameter steel member with a length of 127 cm (500). The shaft
is modelled using five finite elements with six nodes.

Case 2 (refer to Figure 2): same rotor as in Case (1) is used with the following changes
in the configuration. (1) The isotropic bearings are located at nodes 1 and 2 where node
1 is at one end of the rotor and node 2 is 25 cm (100) away from it. (2) A liquid annular
seal with following characteristics is located on node 3. These characteristics were taken
from a numerical example presented by Childs [20]. K=1·567×107 N/m (89 542 lb/in.),
k=0·473×107 N/m (27 028 lb/in.), C=0·3×105 Ns/m (171·42 lb-s/in.),
c=0·210×104 N/m (12 lb/in.), M=6·68 kg.

Two similar disks with following mass properties are added at nodes 5 and 6:
M=4·83 kg (0·028 slug), IP =2·4×10−3 kg m2 (0·224 slug in2), IT =1·23×10−3 kg m2

(0·114 slug in2). The whirl frequency occurring at a rotation speed of 4000 r.p.m. for
various levels of mode truncation are tabulated in Tables 1 and 2 for both Cases 1 and 2.

Table 1 shows the calculated eigenvalues using real and complex modes are shown
opposite to the values reported by Glasgow and Nelson [8] who used complex modes for
the uniform beam rotor supported on isotropic bearings (Case 1). It can be seen that the
eigenvalues predicted using real and complex modes are nearly identical for this case,
irrespective of the number of modes retained. The difference is less than 1% for all cases.
The calculated eigenvalues compare very well with Glasgow and Nelson [18] and are in
fact slightly more accurate. This is probably due to better numerical accuracies attainable
in current day computers. The Case 1 study provided a benchmark since the eigenvalues
were verified to be in agreement with those in Glasgow and Nelson [18].

Predicted eigenvalues for Case 2 using real and complex modes are given in Table 2.
The rotor in this case has significant gyroscopic effects and external direct/cross-coupled
damping, stiffness, and mass coefficients that are due to a liquid seal. The results show that
when the number of precessional modes retained in more than 4, the real and complex
mode CMS procedures yield almost identical eigenvalues. When the number of retained
modes is 4 or less, the eigenvalues corresponding to higher modes become more and more
inaccurate. It is also seen that complex modes produce slightly more accurate values of
the real part of the eigenvalues (modal damping) for higher modes. However, the first four
eigenvalues are still quite accurate within 5% of the values obtained using a higher number
of retained modes by both real and complex CMS procedures.

Few more cases of rotor supported on bearings with unsymmetric dynamic coefficients
were also studied. The results tentatively show that when gyroscopic and unsymmetric
properties of rotor bearing system are negligible, the real and complex eigenvectors
produce almost identical results and both are equally accurate. When the number of
retained modes is less, both the procedures produce equally inaccurate results for higher
modes. For Case 1, a maximum inaccuracy of 5% was observed for the lowest number
of retained modes. When gyroscopic and external damping effects are significant, both real
and complex modes produce accurate results when the number of retained precessional
modes is high. When the number of retained modes is less, only lower modes are predicted
accurately. Both produce almost equally inaccurate results for higher modes although
complex modes produce more accurate values of the real part of the eigenvalue (modal
damping). The author believes complex modes will yield more accurate results when the
excitation frequencies are higher than the first few eigenvalues. Since such high excitation
frequencies are rare in a rotating machinery; real modes CMS should be sufficient for
calculation of eigenvalues, transient analysis and steady state analysis of most systems. It
is recommended that real modes be used whenever possible and complex modes are only
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Figure 1. Schematic configuration of rotor bearing for Case 1—eigenvalue analysis using real and complex
mode CMS.

used if there is a necessity in terms of accuracy. In the following section, a real mode CMS
procedure is used to calculate imbalance response, stability, and bifurcations of a journal
bearing supported flexible rotor systems.

Figure 2. Schematic configuration of rotor bearing for Case 2—eigenvalue analysis using real and complex
mode CMS.
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Figure 3. (a) Model of a flexible rotor supported on identical journal bearings used for CMS analysis—Case
3. (b) Journal bearing notation.

6. UNBALANCE RESPONSE AND STABILITY OF FLEXIBLE ROTORS SUPPORTED ON
JOURNAL BEARINGS

Most rotor systems have some mass imbalance and this causes an excitation at the
running speed. Hence, it is important to be able to predict the unbalance response of a
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Figure 4. Unbalance response at the (a) bearing and (b) disk (node 3)—flexible rotor supported on journal
bearings (Case 3): W, 2 modes; ——, 3 modes; ---, unstable.
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Figure 5. (a) Leading Floquet multiplier versus speed and (b) imaginary part versus real part of lead Floquet
multiplier—flexible rotor supported on journal bearings (Case 3): W, 2 modes; –––, 3 modes.

MDOF rotor bearing system for different speed and other parameter ranges of interest.
The shooting and continuation scheme in combination with the real modes CMS
procedure that has been developed for this study is used here to calculate the unbalance
response of a MDOF rotor with nonlinear supports. To illustrate the power and usefulness
of the combined numerical scheme, an example rotor system supported on plain journal
bearings is considered (Figure 3). An unbalance mass of 3×10−5 kg-m is assumed to be
present at nodes 3 and 4. The same rotor that was used before in Case 1 is analyzed here.
No bearing other than the journal bearings are used to support the load. The journal
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bearings are located at the end nodes 1 and 6. The journal bearing parameters used by
Glasgow and Nelson [18] are used here and are length=2·85 cm (1·12 in.),
diameter=5·72 cm (2·25 in.), viscosity=6·9 cP, radial clearance=0·051 mm (0·002 in.),

Figure 6. X–Y orbit at the (a) bearing and (b) disk (node 3) for S=1·5—flexible rotor supported on journal
bearings (Case 3).
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Figure 7. X–Y orbit at the (a) bearing and (b) disk (node 3) for S=1·7—flexible rotor supported on journal
bearings (Case 3).
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Figure 8. X–Y orbit at the (a) bearing and (b) disk (node 3) for S=2·0—flexible rotor supported on journal
bearings (Case 3).
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Figure 9. X–Y orbit at the (a) bearing and (b) disk (node 3) for S=2·5—flexible rotor supported on journal
bearings (Case 3).



A
m

p
li

tu
d

e 
X

(a)

(b)

0.00 1.00 2.00 3.00 4.00 5.00

Non–dimensional frequency (F/running speed)

0.10

0.00

0.20

0.30

0.40

0.40

0.10

0.30

0.20

0.00

A
m

p
li

tu
d

e 
X

0.00 1.00 2.00 3.00 4.00 5.00

Non–dimensional frequency (F/running speed)

.   . . 716

static bearing load=395 N (88·9 lb). A short bearing model is used to calculate the
fluid-film forces. A short bearing model [20] is used to calculate the pressure field and
fluid-film forces. The expression for the pressure distribution in this case is given by

P(u, t)=−
1
H3 0dH

dt
+0·5

dH
du1, (32)

Figure 10. Frequency spectrum at the (a) bearing and (b) disk for S=1·5—flexible rotor supported on journal
bearings (Case 3).
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Figure 11. Frequency spectrum at the (a) bearing and (b) disk for S=1·7—flexible rotor supported on journal
bearings (Case 3).
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where fluid-film thickness H=1+X(t) cos (u)+Y(t) sin (u), in which u is measured
counterclockwise from the negative X-axis [Figure 3(b)]. The bearing forces
non-dimensionalized with respect to inertia force, mcv2, can be written as

Fx =
1
S

mR
mvn 0LC1

3

I1, Fy =
1
S

mR
mvn 0LC1

3

I2, (33)

Figure 12. Frequency spectrum at the (a) bearing and (b) disk for S=2·0—flexible rotor supported on journal
bearings (Case 3).
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Figure 13. Frequency spectrum at the (a) bearing and (b) disk for S=2·5—flexible rotor supported on journal
bearings (Case 3).

I1 =
2p

0g P(u, t) cos (u) du, I2 =
2p

0g P(u, t) sin (u) du. (34)

The equations of motion were non-dimensionalized as follows:

X= x/c, Y= y/c, X'= ẋ/(vc), Y'= ẏ/(vc), X0= ẍ/(cv2),

Y0= ÿ/(cv2), t=vt.



.   . . 720

The non-dimensionalization t=vt makes it possible to integrate the equations of motion
over a period of revolution 2p (as required by the shooting method) irrespective of the spin
speed v. With this, the system can be quickly analyzed for various spin speeds. Also, the
non-dimensionalization is useful for FFT calculations since v does not directly appear in
the calculations. The non-dimensional equations were utilized with the CMS and
shooting/continuation scheme and the results for the journal bearing case are given
below.

Figures 4(a) and (b) show the amplitude response of the rotor at the bearing and disk
locations (nodes 1 and 3), calculated using two and three precessional modes in the
combined CMS shooting procedure. The amplitude of the periodic response with the
period the same as the running speed (period-1) is plotted over a wide, non-dimensional,
speed range. The speed has been non-dimensionalized with respect to the nominal
natural frequency vn of the rotor system calculated assuming the rotor is simply
supported. The original rotor model has 24 degrees of freedom. Using the real mode CMS
procedure, the number of degrees of freedom has been reduced to six (4 boundary
co-ordinates+2 precessional modes) and seven (4 boundary coordinates+3 precessional
modes) for the two modes and three modes cases, respectively. The figures show that the
results obtained using two precessional modes is almost identical to those calculated using
three modes. The dashed lines indicate unstable solution. The period-1 solution becomes
unstable when the spin speed exceeds 1·65 times the nominal natural frequency (S=1·65)
and bifurcates into a period-2 solution. This is seen from the plot of the Floquet multipliers
in Figures 5(a) and (b). Figure 5(a) shows the magnitude of the leading Floquet multiplier
with respect to the non-dimensional speed. When the speed is 1·65, the magnitude of
the leading Floquet multiplier is unity and at higher speeds this value is above unity
indicating that the period-1 solution is unstable above S=1·65. The type of bifurcation
can be understood from Figure 5(b). It is seen that the Floquet multipliers exit the
unit circule through the negative real axis indicating that the bifurcation is a
period-doubling bifurcation. Such bifurcation results in the birth of a subharmonic
vibration with a frequency that is exactly one-half the running speed. This subsynchronous
vibration is called oil-whirl by rotordynamicists, based on linear analysis. Figures 6(a) and
(b) show the orbital motion of the rotor at the bearing and unbalance location (nodes 1
and 3) before the period-doubling bifurcation (running speed less than the threshold
speed). Both orbits show a periodic motion of period-1. The motion at the unbalance
location is larger than that at the bearing. Figures 7(a) and (b) show the motion at nodes
1 and 3 at a non-dimensional speed of 1·7 which is just above the threshold speed 1·65.
The orbits are much larger than the ones below the threshold speed and show a small
convolution suggesting the presence of another frequency. (The loop typical of
subsynchronous motion cannot be deciphered from the plot as drawn due to the presence
of dominant subsynchronous frequency.) It is seen that the motion is approximately
centered near the bearing center. As the speed increases, the orbit sizes also increase
[Figures 8(a, b), 9(a, b)]. Figures 10(a) and (b) show the frequency spectra at nodes 1
and 3 for S=1·5 (below the threshold speed). The spectra show a predominant
response at the running speed which is due to unbalance. Figures 11(a) and (b) show
the frequency spectrum at a speed parameter 1·7 which is just above the threshold
speed. A dominant response at half-running speed is seen. This subsynchronous
motion is due to the period-doubling bifurcation as seen from the Floquet multiplier
plots before. Figures 12(a, b), 13(a, b) show the frequency spectra at speeds S=2·0 and
2·5 respectively. These plots reveal that as the speed is increased the subsynchronous
response tracks the running speed at exactly half that speed and increases in amplitude
with speed.
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7. CONCLUSIONS

The results of this study show that real component modes can be used to reduce the
order of large order systems with local non-linearities without losing essential dynamics
of the original system. The accuracy of modal parameters predicted using real modes CMS
is comparable to those obtained using complex modes CMS (Tables 1 and 2). The real
modes CMS procedure, in combination with a shooting/continuation scheme, was used
to study the unbalance response and stability of a 24 DOF rotor supported on journal
bearings and the results show that the system could be reduced to 6 DOF (4 boundary
co-ordinates+ the 2 lowest precessional modes) by retaining just 2 constrained normal
modes, and the reduced system essentially displays all the dynamics of the original system.
Truncation of higher modes did not have any significant effect on the threshold speed of
instability. The results were verified by adding more modes to assure convergence. The
method of real modes CMS with shooting/continuation shows promise in analyzing
transient, steady state, stability, and bifurcational behavior of large order nonlinear
systems with strong non-linearities.
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NOMENCLATURE

A real eigenvector matrix of the system
c radial clearance in journal bearing/squeeze film damper= R− r
CMS Component Mode Synthesis
C component damping matrix
E aTA1a
e eccentricity
F aTB1a
f static load per bearing
fx , fy fluid forces in inertial X and Y frames
Fx , Fy non-dimensional fluid forces in inertial X and Y frames= fx /mcv2, fy /mcv2

h (ẋb , q̇, xb , q)T

I unit matrix
L bearing length
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M component mass matrix
K component stiffness matrix
P(u, t) pressure distribution in the damper
Q aTF1a
q modal coordinates in CMS procedure
r, R radii of the journal and bearing respectively
S speed parameter= v/vn (defined for journal bearing systems)
t tme, t=vt.
u imbalance; U= u/c
x, y co-ordinates of journal center with respect to X–Y system fixed to bearing center
X x/c
Y y/c
y (ẋb , xb , q̇, q)T

e e/c
a transformation matrix from vector y to vector h
v angular spin speed of the rotor
vn natural frequency=zk/m
m dynamic viscosity of bearing lubricant
u angular position measured with respect to negative X axis (short bearings)
s somerfeld number= mvLR3/fc2

Subscript
0 static equilibrium value of a variable (for journal bearings)
i internal degrees of freedom in CMS procedure
b boundary degrees of freedom in CMS procedure
nsb non-symmetric, boundary DOF
nsi non-symmetric, internal DOF
s symmetric


